Cardiometabolic well being, weight loss program and the intestine microbiome: a meta-omics perspective

  • Mathers, C. D. & Loncar, D. Projections of worldwide mortality and burden of illness from 2002 to 2030. PLoS Med. 3, e442 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nationwide Academies of Sciences, Engineering, and Medication et al. in Excessive and Rising Mortality Charges Amongst Working-Age Adults Ch. 9 (Nationwide Academies Press, 2021).

  • Jagannathan, R., Patel, S. A., Ali, M. Ok. & Narayan, Ok. M. V. World updates on heart problems mortality tendencies and attribution of conventional threat elements. Curr. Diab. Rep. 19, 44 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Korecka, A. & Arulampalam, V. The intestine microbiome: scourge, sentinel or spectator? J. Oral Microbiol. 4, https://doi.org/10.3402/jom.v4i0.9367 (2012).

  • Tang, W. H. W. & Hazen, S. L. The intestine microbiome and its function in cardiovascular ailments. Circulation 135, 1008–1010 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Menni, C. et al. Intestine microbial range is related to decrease arterial stiffness in girls. Eur. Coronary heart J. 39, 2390–2397 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogal, A., Valdes, A. M. & Menni, C. The function of short-chain fatty acids within the interaction between intestine microbiota and weight loss program in cardio-metabolic well being. Intestine Microbes 13, 1–24 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hansen, T. H., Gøbel, R. J., Hansen, T. & Pedersen, O. The intestine microbiome in cardio-metabolic well being. Genome Med. 7, 33 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jardon, Ok. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the intestine microbiome: a precision vitamin strategy to enhance cardiometabolic well being. Intestine 71, 1214–1226 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wan, Y. et al. Contribution of weight loss program to intestine microbiota and associated host cardiometabolic well being: weight loss program–intestine interplay in human well being. Intestine Microbes 11, 603–609 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, F. H. et al. Intestine metagenome in European girls with regular, impaired and diabetic glucose management. Nature 498, 99–103 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talmor-Barkan, Y. et al. Metabolomic and microbiome profiling reveals personalised threat elements for coronary artery illness. Nat. Med. 28, 295–302 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumida, Ok. et al. Circulating microbiota in cardiometabolic illness. Entrance. Cell. Infect. Microbiol. 12, 892232 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunius, C., Shi, L. & Landberg, R. Metabolomics for improved understanding and prediction of cardiometabolic ailments—current findings from human research. Curr. Nutr. Rep. 4, 348–364 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, M. Food regimen and vitamin: implications to cardiometabolic well being. J. Cardiol. Cardiovasc. Sci. 3, 4–9 (2019).

  • Doran, S. et al. Multi-omics approaches for revealing the complexity of heart problems. Transient. Bioinformatics 22, bbab061 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Joshi, A., Rienks, M., Theofilatos, Ok. & Mayr, M. Techniques biology in heart problems: a multiomics strategy. Nat. Rev. Cardiol. 18, 313–330 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of grownup males. Nat. Microbiol. 3, 356–366 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirmer, M. et al. Dynamics of metatranscription within the inflammatory bowel illness intestine microbiome. Nat. Microbiol. 3, 337–346 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zierer, J. et al. The fecal metabolome as a practical readout of the intestine microbiome. Nat. Genet. 50, 790–795 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to evaluation. Nat. Biotechnol. 35, 833–844 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, Ok. B., Leone, V. & Chang, E. B. Microbial metabolites in well being and illness: navigating the unknown looking for operate. J. Biol. Chem. 292, 8553–8559 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome capabilities. Nat. Biotechnol. 38, 685–688 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakya, M., Lo, C.-C. & Chain, P. S. G. Advances and challenges in metatranscriptomic evaluation. Entrance. Genet. 10, 904 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valles-Colomer, M. et al. Meta-omics in inflammatory bowel illness analysis: purposes, challenges, and pointers. J. Chrons Colitis 10, 735–746 (2016).

    Article 

    Google Scholar
     

  • Kleiner, M. Metaproteomics: rather more than measuring gene expression in microbial communities. mSystems 4, e00115-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Focused metabolomics. Curr. Protoc. Mol. Biol. 98, 30.2.1–30.2.24 (2012).

    Article 

    Google Scholar
     

  • Menni, C., Zierer, J., Valdes, A. M. & Spector, T. D. Mixing omics: combining genetics and metabolomics to check rheumatic ailments. Nat. Rev. Rheumatol. 13, 174–181 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuleš, J. et al. Mixed untargeted and focused metabolomics approaches reveal urinary modifications of amino acids and vitality metabolism in canine babesiosis with completely different ranges of kidney operate. Entrance. Microbiol. 12, 715701 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollywood, Ok., Brison, D. R. & Goodacre, R. Metabolomics: present applied sciences and future tendencies. Proteomics 6, 4716–4723 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linnarsson, S. & Teichmann, S. A. Single-cell genomics: coming of age. Genome Biol. 17, 97 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasolli, E. et al. Intensive unexplored human microbiome range revealed by over 150,000 genomes from metagenomes spanning age, geography, and way of life. Cell 176, 649–662.e20 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human intestine microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome analysis. Cell 185, 2725–2738 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S. & Marzorati, M. in The Affect of Meals Bioactives on Well being: In Vitro and Ex Vivo Fashions 305–317 (Springer Worldwide Publishing, 2015).

  • Minot, S. et al. The human intestine virome: inter-individual variation and dynamic response to weight loss program. Genome Res. 21, 1616–1625 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garmaeva, S. et al. Stability of the human intestine virome and impact of gluten-free weight loss program. Cell Rep. 35, 109132 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarpellini, E. et al. The human intestine microbiota and virome: potential therapeutic implications. Dig. Liver Dis. 47, 1007–1012 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warmbrunn, M. V. et al. Intestine microbiota: a promising goal towards cardiometabolic ailments. Knowledgeable Rev. Endocrinol. Metab. 15, 13–27 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herold, M. et al. Integration of time-series meta-omics knowledge reveals how microbial ecosystems reply to disturbance. Nat. Commun. 11, 5281 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falony, G. et al. Inhabitants-level evaluation of intestine microbiome variation. Science 352, 560–564 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhernakova, A. et al. Inhabitants-based metagenomics evaluation reveals markers for intestine microbiome composition and variety. Science 352, 565–569 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromentin, S. et al. Microbiome and metabolome options of the cardiometabolic illness spectrum. Nat. Med. 28, 303–314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asnicar, F. et al. Microbiome connections with host metabolism and ordinary weight loss program from 1,098 deeply phenotyped people. Nat. Med. 27, 321–332 (2021).

  • Wilmes, P., Heintz-Buschart, A. & Bond, P. L. A decade of metaproteomics: the place we stand and what the longer term holds. Proteomics 15, 3409–3417 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Worth, J. et al. Multi-omics of the intestine microbial ecosystem in inflammatory bowel ailments. Nature 569, 655–662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Discovery of bioactive microbial gene merchandise in inflammatory bowel illness. Nature 606, 754–760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, P. H. Bacterial epigenomics: coming of age. mSystems 6, e0074721 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hiraoka, S. et al. Metaepigenomic evaluation reveals the unexplored range of DNA methylation in an environmental prokaryotic neighborhood. Nat. Commun. 10, 159 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, R. Ok. et al. Affect of weight loss program on the intestine microbiome and implications for human well being. J. Transl. Med. 15, 73 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothschild, D. et al. Setting dominates over host genetics in shaping human intestine microbiota. Nature 555, 210–215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tramontano, M. et al. Dietary preferences of human intestine micro organism reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummings, J. H. & Macfarlane, G. T. The management and penalties of bacterial fermentation within the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vieira-Silva, S. et al. Species–operate relationships form ecological properties of the human intestine microbiome. Nat. Microbiol. 1, 16088 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fehlner-Peach, H. et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host Microbe 26, 680–690.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, G. D. et al. Linking long-term dietary patterns with intestine microbial enterotypes. Science 334, 105–108 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, A. W. et al. Dominant and diet-responsive teams of micro organism inside the human colonic microbiota. ISME J. 5, 220–230 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human intestine microbes related to weight problems. Nature 444, 1022–1023 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • David, L. A. et al. Food regimen quickly and reproducibly alters the human intestine microbiome. Nature 505, 559–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, A. J. et al. Each day sampling reveals personalised weight loss program–microbiome associations in people. Cell Host Microbe 25, 789–802.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. D. et al. The intestine microbiome modulates the protecting affiliation between a Mediterranean weight loss program and cardiometabolic illness threat. Nat. Med. 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferro-Luzzi, A. et al. Altering the Mediterranean weight loss program: results on blood lipids. Am. J. Clin. Nutr. 40, 1027–1037 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, T. S. et al. Mediterranean weight loss program intervention alters the intestine microbiome in older individuals lowering frailty and enhancing well being standing: the NU-AGE 1-year dietary intervention throughout 5 European nations. Intestine 69, 1218–1228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turpin, W. et al. Mediterranean-like dietary sample associations with intestine microbiome composition and subclinical gastrointestinal irritation. Gastroenterology 163, 685–698 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakayama, J. et al. Affect of Westernized weight loss program on intestine microbiota in kids on Leyte Island. Entrance. Microbiol. 8, 197 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tett, A. et al. The Prevotella copri complicated includes 4 distinct clades underrepresented in Westernized populations. Cell Host Microbe 26, 666–679.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovatcheva-Datchary, P. et al. Dietary fiber-induced enchancment in glucose metabolism is related to elevated abundance of Prevotella. Cell Metab. 22, 971–982 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tett, A., Pasolli, E., Masetti, G., Ercolini, D. & Segata, N. Prevotella range, niches and interactions with the human host. Nat. Rev. Microbiol. 19, 585–599 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meslier, V. et al. Mediterranean weight loss program intervention in chubby and overweight topics lowers plasma ldl cholesterol and causes modifications within the intestine microbiome and metabolome independently of vitality consumption. Intestine 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang, Q. Y. et al. Ketogenic diets alter the intestine microbiome leading to decreased intestinal TH17 cells. Cell 181, 1263–1275.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rondanelli, M. et al. The potential roles of very low calorie, very low calorie ketogenic diets and really low carbohydrate diets on the intestine microbiota composition. Entrance. Endocrinol. 12, 662591 (2021).

    Article 

    Google Scholar
     

  • Guo, Y. et al. Intermittent fasting improves cardiometabolic threat elements and alters intestine microbiota in metabolic syndrome sufferers. J. Clin. Endocrinol. Metab. 106, 64–79 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ratiner, Ok., Shapiro, H., Goldenberg, Ok. & Elinav, E. Time-limited diets and the intestine microbiota in cardiometabolic illness. J. Diabetes 14, 377–393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attaye, I., van Oppenraaij, S., Warmbrunn, M. V. & Nieuwdorp, M. The function of the intestine microbiota on the helpful results of ketogenic diets. Vitamins 14, 191 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Barabási, A.-L., Menichetti, G. & Loscalzo, J. The unmapped chemical complexity of our weight loss program. Nat. Meals 1, 33–37 (2019).

    Article 

    Google Scholar
     

  • Clarke, R. J. Espresso: Chemistry Vol. 1 (Springer Science & Enterprise Media, 2012).

  • Ruskovska, T., Maksimova, V. & Milenkovic, D. Polyphenols in human vitamin: from the in vitro antioxidant capability to the helpful results on cardiometabolic well being and associated inter-individual variability—an summary and perspective. Br. J. Nutr. 123, 241–254 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. The 2-way polyphenols–microbiota interactions and their results on weight problems and associated metabolic ailments. Entrance. Nutr. 6, 188 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J. & Queipo-Ortuño, M. I. Advantages of polyphenols on intestine microbiota and implications in human well being. J. Nutr. Biochem. 24, 1415–1422 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mompeo, O. et al. Consumption of stilbenes and flavonoids is linked to lowered threat of weight problems independently of fiber consumption. Vitamins 12, 1871 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Namazi, N., Irandoost, P., Larijani, B. & Azadbakht, L. The consequences of supplementation with conjugated linoleic acid on anthropometric indices and physique composition in chubby and overweight topics: a scientific evaluate and meta-analysis. Crit. Rev. Meals Sci. Nutr. 59, 2720–2733 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Orally administered CLA ameliorates DSS-induced colitis in mice through intestinal barrier enchancment, oxidative stress discount, and inflammatory cytokine and intestine microbiota modulation. J. Agric. Meals Chem. 67, 13282–13298 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosberg-Cody, E. et al. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology 157, 609–615 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Metabolomic modifications upon conjugated linoleic acid supplementation and predictions of physique composition responsiveness. J. Clin. Endocrinol. Metab. 107, 2606–2615 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Function of the intestine microbiota in vitamin and well being. Brit. Med. J. 361, k2179 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cryan, J. F. et al. The microbiota–intestine–mind axis. Physiol. Rev. 99, 1877–2013 (2019).

  • Yoo, W. et al. Excessive-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodd, D. et al. A intestine bacterial pathway metabolizes fragrant amino acids into 9 circulating metabolites. Nature 551, 648–652 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekkers, Ok. F. et al. A web based atlas of human plasma metabolite signatures of intestine microbiome composition. Nat. Commun. 13, 5370 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rath, S., Heidrich, B., Pieper, D. H. & Important, M. Uncovering the trimethylamine-producing micro organism of the human intestine microbiota. Microbiome 5, 54 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. M. et al. Metagenomic evaluation of colorectal most cancers datasets identifies cross-cohort microbial diagnostic signatures and a hyperlink with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falony, G., Vieira-Silva, S. & Raes, J. Microbiology meets massive knowledge: the case of intestine microbiota-derived trimethylamine. Annu. Rev. Microbiol. 69, 305–321 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y. et al. Built-in metagenomics identifies an important function for trimethylamine-producing Lachnoclostridium in selling atherosclerosis. npj Biofilms Microbiomes 8, 11 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schugar, R. C. et al. Intestine microbe-targeted choline trimethylamine lyase inhibition improves weight problems through rewiring of host circadian rhythms. eLife 11, e63998 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gasaly, N., Hermoso, M. A. & Gotteland, M. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel ailments. Int. J. Mol. Sci. 22, 3061 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, D. J. & Preston, T. Formation of brief chain fatty acids by the intestine microbiota and their affect on human metabolism. Intestine Microbes 7, 189–200 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valles-Colomer, M. et al. The neuroactive potential of the human intestine microbiota in high quality of life and despair. Nat. Microbiol. 4, 623–632 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, Y. et al. Excessive-coverage metabolomics uncovers microbiota-driven biochemical panorama of interorgan transport and intestine–mind communication in mice. Nat. Commun. 12, –166000 (2021).

    Article 

    Google Scholar
     

  • Lefort, C. & Cani, P. D. The liver beneath the highlight: bile acids and oxysterols as pivotal actors controlling metabolism. Cells 10, 400 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, A.-J., Mai, C.-T., Zhu, Y.-Z., Liu, X.-C. & Xie, Y. Bile acids as regulatory molecules and potential targets in metabolic ailments. Life Sci. 287, 120152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Intestine microbiome and well being: mechanistic insights. Intestine 71, 1020–1032 (2022).

  • De Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched within the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomasova, L., Grman, M., Ondrias, Ok. & Ufnal, M. The affect of intestine microbiota metabolites on mobile bioenergetics and cardiometabolic well being. Nutr. Metab. 18, 72 (2021).

    Article 

    Google Scholar
     

  • Maier, L. et al. Intensive affect of non-antibiotic medicine on human intestine micro organism. Nature 555, 623–628 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by intestine micro organism and their genes. Nature 570, 462–467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forslund, Ok. et al. Disentangling sort 2 diabetes and metformin therapy signatures within the human intestine microbiota. Nature 528, 262–266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Metformin alters the intestine microbiome of people with treatment-naive sort 2 diabetes, contributing to the therapeutic results of the drug. Nat. Med. 23, 850–858 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, L. et al. Intestine microbiota and intestinal FXR mediate the scientific advantages of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieira-Silva, S. et al. Statin remedy is related to decrease prevalence of intestine microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilmanski, T. et al. Heterogeneity in statin responses defined by variation within the human intestine microbiome. Med 3, 388–405.e6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klünemann, M. et al. Bioaccumulation of therapeutic medicine by human intestine micro organism. Nature 597, 533–538 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human intestine bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies intestine bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).

  • Zimmermann, M., Raosaheb Patil, Ok., Typas, A. & Maier, L. In direction of a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).

  • Maier, L. & Typas, A. Systematically investigating the affect of treatment on the intestine microbiome. Curr. Opin. Microbiol. 39, 128–135 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S., Chaudhary, Ok. & Garmire, L. X. Extra is best: current progress in multi-omics knowledge integration strategies. Entrance. Genet. 8, 84 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zeevi, D. et al. Personalised vitamin by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berry, S. E. et al. Human postprandial responses to meals and potential for precision vitamin. Nat. Med. 26, 964–973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doust, C. et al. Discovery of 42 genome-wide vital loci related to dyslexia. Nat. Genet. 54, 1621–1629 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, G. R. et al. Dietary prebiotics: present standing and new definition. Meals Sci. Technol. Bull. 7, 1–19 (2010).


    Google Scholar
     

  • Hill, C. et al. Knowledgeable consensus doc. The Worldwide Scientific Affiliation for Probiotics and Prebiotics consensus assertion on the scope and acceptable use of the time period probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Swanson, Ok. S. et al. The Worldwide Scientific Affiliation for Probiotics and Prebiotics (ISAPP) consensus assertion on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen, S. et al. The Worldwide Scientific Affiliation of Probiotics and Prebiotics (ISAPP) consensus assertion on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Toole, P. W., Marchesi, J. R. & Hill, C. Subsequent-generation probiotics: the spectrum from probiotics to reside biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Karcher, N. et al. Genomic range and ecology of human-associated Akkermansia species within the intestine microbiome revealed by intensive metagenomic meeting. Genome Biol. 22, 209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depommier, C. et al. Supplementation with Akkermansia muciniphila in chubby and overweight human volunteers: a proof-of-concept exploratory research. Nat. Med. 25, 1096–1103 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Filippis, F., Esposito, A. & Ercolini, D. Outlook on next-generation probiotics from the human intestine. Cell. Mol. Life Sci. 79, 76 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Baxter, M. & Colville, A. Opposed occasions in faecal microbiota transplant: a evaluate of the literature. J. Hosp. Infect. 92, 117–127 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maida, M., Mcilroy, J., Ianiro, G. & Cammarota, G. Faecal microbiota transplantation as rising therapy in European nations. Adv. Exp. Med. Biol. 1050, 177–195 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Baunwall, S. M. D. et al. Danish nationwide guideline for the therapy of an infection and use of faecal microbiota transplantation (FMT). Scand. J. Gastroenterol. 56, 1056–1077 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suskind, D. L. et al. Fecal microbial transplant impact on scientific outcomes and fecal microbiome in energetic Crohn’s illness. Inflamm. Bowel Dis. 21, 556–563 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 remedy in melanoma sufferers. Science 371, 595–602 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma sufferers. Science 371, 602–609 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koopen, A. M. et al. Impact of fecal microbiota transplantation mixed with mediterranean weight loss program on insulin sensitivity in topics with metabolic syndrome. Entrance. Microbiol. 12, 662159 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ianiro, G. et al. Variability of pressure engraftment and predictability of microbiome composition after fecal microbiota transplantation throughout completely different ailments. Nat. Med. 28, 1913–1923 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valles-Colomer, M. et al. The person-to-person transmission panorama of the intestine and oral microbiomes. Nature 614, 125–135 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finlay, B. B., CIFAR People & The Microbiome. Are noncommunicable ailments communicable? Science 367, 250–251 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aasmets, O., Krigul, Ok. L., Lüll, Ok., Metspalu, A. & Org, E. Intestine metagenome associations with intensive digital well being knowledge in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gacesa, R. et al. Environmental elements shaping the intestine microbiome in a Dutch inhabitants. Nature 604, 732–739 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Supply hyperlink