
Mathers, C. D. & Loncar, D. Projections of worldwide mortality and burden of illness from 2002 to 2030. PLoS Med. 3, e442 (2006).
Nationwide Academies of Sciences, Engineering, and Medication et al. in Excessive and Rising Mortality Charges Amongst Working-Age Adults Ch. 9 (Nationwide Academies Press, 2021).
Jagannathan, R., Patel, S. A., Ali, M. Ok. & Narayan, Ok. M. V. World updates on heart problems mortality tendencies and attribution of conventional threat elements. Curr. Diab. Rep. 19, 44 (2019).
Korecka, A. & Arulampalam, V. The intestine microbiome: scourge, sentinel or spectator? J. Oral Microbiol. 4, https://doi.org/10.3402/jom.v4i0.9367 (2012).
Tang, W. H. W. & Hazen, S. L. The intestine microbiome and its function in cardiovascular ailments. Circulation 135, 1008–1010 (2017).
Menni, C. et al. Intestine microbial range is related to decrease arterial stiffness in girls. Eur. Coronary heart J. 39, 2390–2397 (2018).
Nogal, A., Valdes, A. M. & Menni, C. The function of short-chain fatty acids within the interaction between intestine microbiota and weight loss program in cardio-metabolic well being. Intestine Microbes 13, 1–24 (2021).
Hansen, T. H., Gøbel, R. J., Hansen, T. & Pedersen, O. The intestine microbiome in cardio-metabolic well being. Genome Med. 7, 33 (2015).
Jardon, Ok. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the intestine microbiome: a precision vitamin strategy to enhance cardiometabolic well being. Intestine 71, 1214–1226 (2022).
Wan, Y. et al. Contribution of weight loss program to intestine microbiota and associated host cardiometabolic well being: weight loss program–intestine interplay in human well being. Intestine Microbes 11, 603–609 (2020).
Karlsson, F. H. et al. Intestine metagenome in European girls with regular, impaired and diabetic glucose management. Nature 498, 99–103 (2013).
Talmor-Barkan, Y. et al. Metabolomic and microbiome profiling reveals personalised threat elements for coronary artery illness. Nat. Med. 28, 295–302 (2022).
Sumida, Ok. et al. Circulating microbiota in cardiometabolic illness. Entrance. Cell. Infect. Microbiol. 12, 892232 (2022).
Brunius, C., Shi, L. & Landberg, R. Metabolomics for improved understanding and prediction of cardiometabolic ailments—current findings from human research. Curr. Nutr. Rep. 4, 348–364 (2015).
Johnson, M. Food regimen and vitamin: implications to cardiometabolic well being. J. Cardiol. Cardiovasc. Sci. 3, 4–9 (2019).
Doran, S. et al. Multi-omics approaches for revealing the complexity of heart problems. Transient. Bioinformatics 22, bbab061 (2021).
Joshi, A., Rienks, M., Theofilatos, Ok. & Mayr, M. Techniques biology in heart problems: a multiomics strategy. Nat. Rev. Cardiol. 18, 313–330 (2020).
Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of grownup males. Nat. Microbiol. 3, 356–366 (2018).
Schirmer, M. et al. Dynamics of metatranscription within the inflammatory bowel illness intestine microbiome. Nat. Microbiol. 3, 337–346 (2018).
Zierer, J. et al. The fecal metabolome as a practical readout of the intestine microbiome. Nat. Genet. 50, 790–795 (2018).
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to evaluation. Nat. Biotechnol. 35, 833–844 (2017).
Martinez, Ok. B., Leone, V. & Chang, E. B. Microbial metabolites in well being and illness: navigating the unknown looking for operate. J. Biol. Chem. 292, 8553–8559 (2017).
Douglas, G. M. et al. PICRUSt2 for prediction of metagenome capabilities. Nat. Biotechnol. 38, 685–688 (2020).
Shakya, M., Lo, C.-C. & Chain, P. S. G. Advances and challenges in metatranscriptomic evaluation. Entrance. Genet. 10, 904 (2019).
Valles-Colomer, M. et al. Meta-omics in inflammatory bowel illness analysis: purposes, challenges, and pointers. J. Chrons Colitis 10, 735–746 (2016).
Kleiner, M. Metaproteomics: rather more than measuring gene expression in microbial communities. mSystems 4, e00115-19 (2019).
Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Focused metabolomics. Curr. Protoc. Mol. Biol. 98, 30.2.1–30.2.24 (2012).
Menni, C., Zierer, J., Valdes, A. M. & Spector, T. D. Mixing omics: combining genetics and metabolomics to check rheumatic ailments. Nat. Rev. Rheumatol. 13, 174–181 (2017).
Kuleš, J. et al. Mixed untargeted and focused metabolomics approaches reveal urinary modifications of amino acids and vitality metabolism in canine babesiosis with completely different ranges of kidney operate. Entrance. Microbiol. 12, 715701 (2021).
Hollywood, Ok., Brison, D. R. & Goodacre, R. Metabolomics: present applied sciences and future tendencies. Proteomics 6, 4716–4723 (2006).
Linnarsson, S. & Teichmann, S. A. Single-cell genomics: coming of age. Genome Biol. 17, 97 (2016).
Pasolli, E. et al. Intensive unexplored human microbiome range revealed by over 150,000 genomes from metagenomes spanning age, geography, and way of life. Cell 176, 649–662.e20 (2019).
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human intestine microbiome. Nat. Biotechnol. 39, 105–114 (2021).
Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome analysis. Cell 185, 2725–2738 (2022).
Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).
Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S. & Marzorati, M. in The Affect of Meals Bioactives on Well being: In Vitro and Ex Vivo Fashions 305–317 (Springer Worldwide Publishing, 2015).
Minot, S. et al. The human intestine virome: inter-individual variation and dynamic response to weight loss program. Genome Res. 21, 1616–1625 (2011).
Garmaeva, S. et al. Stability of the human intestine virome and impact of gluten-free weight loss program. Cell Rep. 35, 109132 (2021).
Scarpellini, E. et al. The human intestine microbiota and virome: potential therapeutic implications. Dig. Liver Dis. 47, 1007–1012 (2015).
Warmbrunn, M. V. et al. Intestine microbiota: a promising goal towards cardiometabolic ailments. Knowledgeable Rev. Endocrinol. Metab. 15, 13–27 (2020).
Herold, M. et al. Integration of time-series meta-omics knowledge reveals how microbial ecosystems reply to disturbance. Nat. Commun. 11, 5281 (2020).
Falony, G. et al. Inhabitants-level evaluation of intestine microbiome variation. Science 352, 560–564 (2016).
Zhernakova, A. et al. Inhabitants-based metagenomics evaluation reveals markers for intestine microbiome composition and variety. Science 352, 565–569 (2016).
Fromentin, S. et al. Microbiome and metabolome options of the cardiometabolic illness spectrum. Nat. Med. 28, 303–314 (2022).
Asnicar, F. et al. Microbiome connections with host metabolism and ordinary weight loss program from 1,098 deeply phenotyped people. Nat. Med. 27, 321–332 (2021).
Wilmes, P., Heintz-Buschart, A. & Bond, P. L. A decade of metaproteomics: the place we stand and what the longer term holds. Proteomics 15, 3409–3417 (2015).
Lloyd-Worth, J. et al. Multi-omics of the intestine microbial ecosystem in inflammatory bowel ailments. Nature 569, 655–662 (2019).
Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).
Zhang, Y. et al. Discovery of bioactive microbial gene merchandise in inflammatory bowel illness. Nature 606, 754–760 (2022).
Oliveira, P. H. Bacterial epigenomics: coming of age. mSystems 6, e0074721 (2021).
Hiraoka, S. et al. Metaepigenomic evaluation reveals the unexplored range of DNA methylation in an environmental prokaryotic neighborhood. Nat. Commun. 10, 159 (2019).
Singh, R. Ok. et al. Affect of weight loss program on the intestine microbiome and implications for human well being. J. Transl. Med. 15, 73 (2017).
Rothschild, D. et al. Setting dominates over host genetics in shaping human intestine microbiota. Nature 555, 210–215 (2018).
Tramontano, M. et al. Dietary preferences of human intestine micro organism reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).
Cummings, J. H. & Macfarlane, G. T. The management and penalties of bacterial fermentation within the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).
Vieira-Silva, S. et al. Species–operate relationships form ecological properties of the human intestine microbiome. Nat. Microbiol. 1, 16088 (2016).
Fehlner-Peach, H. et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host Microbe 26, 680–690.e5 (2019).
Wu, G. D. et al. Linking long-term dietary patterns with intestine microbial enterotypes. Science 334, 105–108 (2011).
Walker, A. W. et al. Dominant and diet-responsive teams of micro organism inside the human colonic microbiota. ISME J. 5, 220–230 (2011).
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human intestine microbes related to weight problems. Nature 444, 1022–1023 (2006).
David, L. A. et al. Food regimen quickly and reproducibly alters the human intestine microbiome. Nature 505, 559–563 (2014).
Johnson, A. J. et al. Each day sampling reveals personalised weight loss program–microbiome associations in people. Cell Host Microbe 25, 789–802.e5 (2019).
Wang, D. D. et al. The intestine microbiome modulates the protecting affiliation between a Mediterranean weight loss program and cardiometabolic illness threat. Nat. Med. 27, 333–343 (2021).
Ferro-Luzzi, A. et al. Altering the Mediterranean weight loss program: results on blood lipids. Am. J. Clin. Nutr. 40, 1027–1037 (1984).
Ghosh, T. S. et al. Mediterranean weight loss program intervention alters the intestine microbiome in older individuals lowering frailty and enhancing well being standing: the NU-AGE 1-year dietary intervention throughout 5 European nations. Intestine 69, 1218–1228 (2020).
Turpin, W. et al. Mediterranean-like dietary sample associations with intestine microbiome composition and subclinical gastrointestinal irritation. Gastroenterology 163, 685–698 (2022).
Nakayama, J. et al. Affect of Westernized weight loss program on intestine microbiota in kids on Leyte Island. Entrance. Microbiol. 8, 197 (2017).
Tett, A. et al. The Prevotella copri complicated includes 4 distinct clades underrepresented in Westernized populations. Cell Host Microbe 26, 666–679.e7 (2019).
Kovatcheva-Datchary, P. et al. Dietary fiber-induced enchancment in glucose metabolism is related to elevated abundance of Prevotella. Cell Metab. 22, 971–982 (2015).
Tett, A., Pasolli, E., Masetti, G., Ercolini, D. & Segata, N. Prevotella range, niches and interactions with the human host. Nat. Rev. Microbiol. 19, 585–599 (2021).
Meslier, V. et al. Mediterranean weight loss program intervention in chubby and overweight topics lowers plasma ldl cholesterol and causes modifications within the intestine microbiome and metabolome independently of vitality consumption. Intestine 69, 1258–1268 (2020).
Ang, Q. Y. et al. Ketogenic diets alter the intestine microbiome leading to decreased intestinal TH17 cells. Cell 181, 1263–1275.e16 (2020).
Rondanelli, M. et al. The potential roles of very low calorie, very low calorie ketogenic diets and really low carbohydrate diets on the intestine microbiota composition. Entrance. Endocrinol. 12, 662591 (2021).
Guo, Y. et al. Intermittent fasting improves cardiometabolic threat elements and alters intestine microbiota in metabolic syndrome sufferers. J. Clin. Endocrinol. Metab. 106, 64–79 (2021).
Ratiner, Ok., Shapiro, H., Goldenberg, Ok. & Elinav, E. Time-limited diets and the intestine microbiota in cardiometabolic illness. J. Diabetes 14, 377–393 (2022).
Attaye, I., van Oppenraaij, S., Warmbrunn, M. V. & Nieuwdorp, M. The function of the intestine microbiota on the helpful results of ketogenic diets. Vitamins 14, 191 (2022).
Barabási, A.-L., Menichetti, G. & Loscalzo, J. The unmapped chemical complexity of our weight loss program. Nat. Meals 1, 33–37 (2019).
Clarke, R. J. Espresso: Chemistry Vol. 1 (Springer Science & Enterprise Media, 2012).
Ruskovska, T., Maksimova, V. & Milenkovic, D. Polyphenols in human vitamin: from the in vitro antioxidant capability to the helpful results on cardiometabolic well being and associated inter-individual variability—an summary and perspective. Br. J. Nutr. 123, 241–254 (2020).
Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. The 2-way polyphenols–microbiota interactions and their results on weight problems and associated metabolic ailments. Entrance. Nutr. 6, 188 (2019).
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J. & Queipo-Ortuño, M. I. Advantages of polyphenols on intestine microbiota and implications in human well being. J. Nutr. Biochem. 24, 1415–1422 (2013).
Mompeo, O. et al. Consumption of stilbenes and flavonoids is linked to lowered threat of weight problems independently of fiber consumption. Vitamins 12, 1871 (2020).
Namazi, N., Irandoost, P., Larijani, B. & Azadbakht, L. The consequences of supplementation with conjugated linoleic acid on anthropometric indices and physique composition in chubby and overweight topics: a scientific evaluate and meta-analysis. Crit. Rev. Meals Sci. Nutr. 59, 2720–2733 (2019).
Chen, Y. et al. Orally administered CLA ameliorates DSS-induced colitis in mice through intestinal barrier enchancment, oxidative stress discount, and inflammatory cytokine and intestine microbiota modulation. J. Agric. Meals Chem. 67, 13282–13298 (2019).
Rosberg-Cody, E. et al. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology 157, 609–615 (2011).
He, Y. et al. Metabolomic modifications upon conjugated linoleic acid supplementation and predictions of physique composition responsiveness. J. Clin. Endocrinol. Metab. 107, 2606–2615 (2022).
Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Function of the intestine microbiota in vitamin and well being. Brit. Med. J. 361, k2179 (2018).
Cryan, J. F. et al. The microbiota–intestine–mind axis. Physiol. Rev. 99, 1877–2013 (2019).
Yoo, W. et al. Excessive-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).
Dodd, D. et al. A intestine bacterial pathway metabolizes fragrant amino acids into 9 circulating metabolites. Nature 551, 648–652 (2017).
Dekkers, Ok. F. et al. A web based atlas of human plasma metabolite signatures of intestine microbiome composition. Nat. Commun. 13, 5370 (2022).
Rath, S., Heidrich, B., Pieper, D. H. & Important, M. Uncovering the trimethylamine-producing micro organism of the human intestine microbiota. Microbiome 5, 54 (2017).
Thomas, A. M. et al. Metagenomic evaluation of colorectal most cancers datasets identifies cross-cohort microbial diagnostic signatures and a hyperlink with choline degradation. Nat. Med. 25, 667–678 (2019).
Falony, G., Vieira-Silva, S. & Raes, J. Microbiology meets massive knowledge: the case of intestine microbiota-derived trimethylamine. Annu. Rev. Microbiol. 69, 305–321 (2015).
Cai, Y.-Y. et al. Built-in metagenomics identifies an important function for trimethylamine-producing Lachnoclostridium in selling atherosclerosis. npj Biofilms Microbiomes 8, 11 (2022).
Schugar, R. C. et al. Intestine microbe-targeted choline trimethylamine lyase inhibition improves weight problems through rewiring of host circadian rhythms. eLife 11, e63998 (2022).
Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).
Gasaly, N., Hermoso, M. A. & Gotteland, M. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel ailments. Int. J. Mol. Sci. 22, 3061 (2021).
Morrison, D. J. & Preston, T. Formation of brief chain fatty acids by the intestine microbiota and their affect on human metabolism. Intestine Microbes 7, 189–200 (2016).
Valles-Colomer, M. et al. The neuroactive potential of the human intestine microbiota in high quality of life and despair. Nat. Microbiol. 4, 623–632 (2019).
Lai, Y. et al. Excessive-coverage metabolomics uncovers microbiota-driven biochemical panorama of interorgan transport and intestine–mind communication in mice. Nat. Commun. 12, –166000 (2021).
Lefort, C. & Cani, P. D. The liver beneath the highlight: bile acids and oxysterols as pivotal actors controlling metabolism. Cells 10, 400 (2021).
Xie, A.-J., Mai, C.-T., Zhu, Y.-Z., Liu, X.-C. & Xie, Y. Bile acids as regulatory molecules and potential targets in metabolic ailments. Life Sci. 287, 120152 (2021).
De Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Intestine microbiome and well being: mechanistic insights. Intestine 71, 1020–1032 (2022).
De Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).
Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched within the microbiome of centenarians. Nature 599, 458–464 (2021).
Tomasova, L., Grman, M., Ondrias, Ok. & Ufnal, M. The affect of intestine microbiota metabolites on mobile bioenergetics and cardiometabolic well being. Nutr. Metab. 18, 72 (2021).
Maier, L. et al. Intensive affect of non-antibiotic medicine on human intestine micro organism. Nature 555, 623–628 (2018).
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by intestine micro organism and their genes. Nature 570, 462–467 (2019).
Forslund, Ok. et al. Disentangling sort 2 diabetes and metformin therapy signatures within the human intestine microbiota. Nature 528, 262–266 (2015).
Wu, H. et al. Metformin alters the intestine microbiome of people with treatment-naive sort 2 diabetes, contributing to the therapeutic results of the drug. Nat. Med. 23, 850–858 (2017).
Solar, L. et al. Intestine microbiota and intestinal FXR mediate the scientific advantages of metformin. Nat. Med. 24, 1919–1929 (2018).
Vieira-Silva, S. et al. Statin remedy is related to decrease prevalence of intestine microbiota dysbiosis. Nature 581, 310–315 (2020).
Wilmanski, T. et al. Heterogeneity in statin responses defined by variation within the human intestine microbiome. Med 3, 388–405.e6 (2022).
Klünemann, M. et al. Bioaccumulation of therapeutic medicine by human intestine micro organism. Nature 597, 533–538 (2021).
Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human intestine bacterium Eggerthella lenta. Science 341, 295–298 (2013).
Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies intestine bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).
Zimmermann, M., Raosaheb Patil, Ok., Typas, A. & Maier, L. In direction of a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).
Maier, L. & Typas, A. Systematically investigating the affect of treatment on the intestine microbiome. Curr. Opin. Microbiol. 39, 128–135 (2017).
Huang, S., Chaudhary, Ok. & Garmire, L. X. Extra is best: current progress in multi-omics knowledge integration strategies. Entrance. Genet. 8, 84 (2017).
Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).
Zeevi, D. et al. Personalised vitamin by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
Berry, S. E. et al. Human postprandial responses to meals and potential for precision vitamin. Nat. Med. 26, 964–973 (2020).
Doust, C. et al. Discovery of 42 genome-wide vital loci related to dyslexia. Nat. Genet. 54, 1621–1629 (2022).
Gibson, G. R. et al. Dietary prebiotics: present standing and new definition. Meals Sci. Technol. Bull. 7, 1–19 (2010).
Hill, C. et al. Knowledgeable consensus doc. The Worldwide Scientific Affiliation for Probiotics and Prebiotics consensus assertion on the scope and acceptable use of the time period probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).
Swanson, Ok. S. et al. The Worldwide Scientific Affiliation for Probiotics and Prebiotics (ISAPP) consensus assertion on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).
Salminen, S. et al. The Worldwide Scientific Affiliation of Probiotics and Prebiotics (ISAPP) consensus assertion on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).
O’Toole, P. W., Marchesi, J. R. & Hill, C. Subsequent-generation probiotics: the spectrum from probiotics to reside biotherapeutics. Nat. Microbiol. 2, 17057 (2017).
Karcher, N. et al. Genomic range and ecology of human-associated Akkermansia species within the intestine microbiome revealed by intensive metagenomic meeting. Genome Biol. 22, 209 (2021).
Depommier, C. et al. Supplementation with Akkermansia muciniphila in chubby and overweight human volunteers: a proof-of-concept exploratory research. Nat. Med. 25, 1096–1103 (2019).
De Filippis, F., Esposito, A. & Ercolini, D. Outlook on next-generation probiotics from the human intestine. Cell. Mol. Life Sci. 79, 76 (2022).
Baxter, M. & Colville, A. Opposed occasions in faecal microbiota transplant: a evaluate of the literature. J. Hosp. Infect. 92, 117–127 (2016).
Maida, M., Mcilroy, J., Ianiro, G. & Cammarota, G. Faecal microbiota transplantation as rising therapy in European nations. Adv. Exp. Med. Biol. 1050, 177–195 (2018).
Baunwall, S. M. D. et al. Danish nationwide guideline for the therapy of an infection and use of faecal microbiota transplantation (FMT). Scand. J. Gastroenterol. 56, 1056–1077 (2021).
Suskind, D. L. et al. Fecal microbial transplant impact on scientific outcomes and fecal microbiome in energetic Crohn’s illness. Inflamm. Bowel Dis. 21, 556–563 (2015).
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 remedy in melanoma sufferers. Science 371, 595–602 (2021).
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma sufferers. Science 371, 602–609 (2021).
Koopen, A. M. et al. Impact of fecal microbiota transplantation mixed with mediterranean weight loss program on insulin sensitivity in topics with metabolic syndrome. Entrance. Microbiol. 12, 662159 (2021).
Ianiro, G. et al. Variability of pressure engraftment and predictability of microbiome composition after fecal microbiota transplantation throughout completely different ailments. Nat. Med. 28, 1913–1923 (2022).
Valles-Colomer, M. et al. The person-to-person transmission panorama of the intestine and oral microbiomes. Nature 614, 125–135 (2023).
Finlay, B. B., CIFAR People & The Microbiome. Are noncommunicable ailments communicable? Science 367, 250–251 (2020).
Aasmets, O., Krigul, Ok. L., Lüll, Ok., Metspalu, A. & Org, E. Intestine metagenome associations with intensive digital well being knowledge in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869 (2022).
Gacesa, R. et al. Environmental elements shaping the intestine microbiome in a Dutch inhabitants. Nature 604, 732–739 (2022).
Supply hyperlink